楊帥1 李興勤2 李平1 王長青1
(1.安科瑞電氣股份有限公司,上海 201801)
(2. 四川西南廣廈建筑設計院有限公司,四川 成都 610042)
摘要:在隔離電源系統中,為防止由于多點接地而引發嚴重后果,需要實時對系統進行對地絕緣監測,并在監測到對地絕緣故障時,進行故障定位。本文在介紹絕緣定位用信號發生器的工作原理的基礎上,詳細闡述了信號發生器的硬件和軟件設計。本文中設計的產品已通過試驗檢驗,可應用于IT系統,為應用場所提供安全可靠的供電解決方案。
關鍵詞:IT系統 信號發生器 故障定位
0 引言
在IT系統中,單點接地故障是一種很常見的故障。一旦出現單點接地故障,IT系統就會變為TN-S系統,雖然可以帶故障繼續運行,但已經失去了IT系統的點,增加了安全隱患。因此需要實時監測系統的對地絕緣狀況,并在監測到對地絕緣故障時,能通過儀表自動定位故障點支路。若沒有自動定位功能,一旦出現故障,只能依靠人工對多達數十條、數百條,乃至成千上萬條負載支路逐條斷電查找,不僅費時費力,更嚴重破壞了供電連續性。這在某些需要連續供電的特殊場所(如醫院手術室等)是不允許的[1]。
基于上述情況,本文設計了一種絕緣故障定位用信號發生器,它裝設于IT系統中, 配合絕緣故障定位裝置實現絕緣故障定位功能。當IT系統發生絕緣故障時,信號發生器啟動并產生定位信號,注入到IT系統與地之間。絕緣故障定位裝置通過傳感器逐路巡檢,當檢測到定位信號流經某支路時,便可確定該支路為絕緣故障所在回路。此時,操作人員可有目的性的針對該故障支路進行斷電或其它保護操作,不必逐條支路斷電進行排查,不僅提高了工作效率,也有效的保障了系統供電的連續性。因此,對電力系統供電的安全性、連續性和可靠性具有極其重要的意義。
1 信號發生原理
信號發生器的工作原理是當IT系統發生單點接地故障時,輪流在系統某根線與大地之間注入定位信號,以便絕緣故障定位儀能在故障支路上監測到定位信號。常采用圖1所示發生原理。
圖1 信號發生器的發生原理
在IT系統中,注入的測試信號的有效值足夠小,以免對IT系統形成太大干擾或對系統負載造成危害;又要有足夠大的峰值,以便在故障支路上形成足夠大的電流,使故障定位儀的電流互感器能正常監測。
考慮以上兩種情況,本文采用脈沖信號作為測試信號。如果脈沖信號幅度足夠大,寬度足夠窄,則可以實現有效值足夠小、峰值足夠兩個期望目標。從簡化設計的角度出發,沒有必要在信號發生器上直接產生高壓脈沖信號,可以通過截取IT系統中交流信號的波峰來實現。
對于單項交流IT系統,兩根線L1、L2間電壓為AC220V,其峰值為 ,滿足脈沖峰值足夠大的要求。為滿足有效值足夠小的要求,本文依照標準IEC61557-9的“定位信號電壓的有效值不允許超過50V”的規定,將電壓閾值設為50V[2]。依此,可計算出脈沖寬度(由于脈沖寬度很小,為方便計算,可將此峰值脈沖視為幅度為 ]的矩形脈沖)。
當交流電壓周期為50Hz時,脈沖寬度
當交流電壓為60Hz時,脈沖寬度
利用單片機的定時器功能,配合光耦,可以截取0.4ms的峰值脈沖。由于0.4ms<0.4304ms<0.5165ms,并且實際截取的脈沖信號中,除波峰一點外,其余點幅度均小于 ,因此其有效值一定會小于設定的閾值50V,可以滿足脈沖有效值足夠小的要求。
2 硬件設計
本設計的硬件功能模塊主要包括電源模塊、中央控制模塊、監測模塊、信號發生模塊、通信模塊、指示燈模塊。硬件設計原理框圖如圖2所示。
圖2 硬件設計原理框圖
信號發生器上電后,CPU即通過監測模塊對IT系統的電壓進行實時監測,測量出IT系統的交流頻率。當系統發生對地絕緣故障時,信號發生器根據測量出的頻率大小,確定測試信號的脈沖寬度以及脈沖頻率,截取系統波峰,產生測試信號,輪流加到L1-PE、L2-PE間。由于發生絕緣故障,故障支路可等效為一較小值電阻,連接IT系統發生故障的線以及大地,形成電流回路,測試信號能在故障支路上產生測試電流,絕緣故障定位儀逐路巡回監測各支路時,在某個支路上監測到此測試電流,即可判定此條支路為故障支路。本設計中,中央控制模塊選用ST公司生產的32位ARM CortexTM-M3內核單片機STM32F103,該芯片處理速度快,高運行速度可達72MHz。芯片具有豐富的片內和外圍資源,片內RAM 20KB和FLASH閃存64KB,帶有多通道的12位A/D轉化模塊,以及多個SPI、I2C、CAN等通訊接口,大大簡化了外圍電路的設計。
3 軟件設計
信號發生器的控制程序用C語言編寫完成,在程序設計中采用了結構化程序設計方法,便于程序代碼的維護、移植和升級。系統上電后,先完成各個模塊的初始化和自檢,確保系統工作的可靠性,然后確定系統中的各個部分硬件電路正常后,自動進入正常工作模式,系統主程序流程圖如圖3所示。
圖3 軟件流程圖
為了充分保證信號發生器運行的準確性與可靠性。軟件上采用了特定的程序算法進行處理,主要包括:
(1)數字濾波算法。隨著電力系統的日漸復雜,電網中的諧波含量不斷增加。信號發生器采集到的*手信號中自然也包含了大量了諧波分量,以及其他一些噪聲干擾。這些干擾如果不濾除,會給后續計算帶來影響。為了避免這些影響,軟件在采集到數據之后,采用了數字濾波算法進行處理,濾除掉信號中諧波、噪聲等干擾的部分,只讓有用的信號參與結果運算,從而使計算的結果更加可靠。
(2)IT系統交流頻率自適應法。因為工作環境的多樣性,工作電壓不一定就是50Hz,實際中的電壓頻率可能更高或更低,因此要通過監測模塊實時監測IT系統的交流頻率。監測模塊將比較L1、L2兩根線之間的電壓,對UL1>UL2和UL1<UL2的情況分別計時,記為t1和t2。由于電壓比較時存在一定的閾值電壓,所以會存在t1>t2或t2>t1的現象。如果t1+t2=20ms,即系統交流頻率為50Hz,如果此時出現系統對地絕緣故障,即可在(t1/2-0.2)ms與(t1/2+0.2)ms之間截取一段寬度為0.4ms的脈沖,在(t2/2-0.2)ms與(t2/2+0.2)ms之間截取一段寬度為0.4ms的脈沖。
圖4 L1、L2間電壓及截取的脈沖電壓
如圖4所示,系統電壓的每個周期,信號發生器截取兩次脈沖,分別在L1-L2的正半波的波峰處(如圖4行),以及L1-L2的負半波的波峰處(如圖4三行)。如果故障點發生在L1線上,則在L1-L2的負半波的波峰處截取的脈沖波形可以在故障支路上表現為正,能被絕緣故障定位儀監測到;如果故障點發生在L2線上,則在L1-L2的正半波的波峰處截取的脈沖波形可以在故障支路上表現為正,能被絕緣故障定位儀監測到。
如果t1+t2=10ms,考慮到脈沖有效值小于50V的需求,可以不用每個周期截取兩次脈沖(L1-L2正半波,L1-L2負半波),而選擇每兩個周期截取兩次脈沖(L1-L2正半波,L1-L2負半波)。其他頻率依次類推即可。
4 信號發生器在醫療IT絕緣監測及故障定位系統的應用
基于本文設計的信號發生器,已成功應用于某醫院重癥監護室,系統應用如圖5所示。通過通訊線路,將絕緣監測儀、絕緣故障定位儀和信號發生器構成一個局域網絡。信號發生器上電后自動進入監測模式,監測IT系統的頻率。當絕緣監測儀監測到IT系統發生對地絕緣故障時,通過通訊線路,啟動信號發生器和絕緣故障定位儀,進入信號發生模式和故障定位模式。
圖5 某醫院重癥監護室IT系統應用圖
在實際工程應用中,信號發生器產生的脈沖波形如圖6所示,由圖可看出,該波形存在大量的雜波干擾,峰值也較理論的 偏?。▓D6中正弦波形為系統電壓,作為比照),但還是滿足絕緣故障定位的要求的,在絕緣故障定位儀端監視到的波形,經過濾波等預處理操作之后,如圖7所示。
圖6 信號發生器產生的波形
圖7 絕緣故障定位儀監測到的波形
由圖7可看出,監測到的脈沖波形比干擾波形要高的多,形成一個明顯的落差,通過設定適當的閾值,配合脈沖寬度等條件,可以準確地判斷出此支路是否有測試信號通過,即此支路是否有絕緣故障。
監測到故障支路后,絕緣故障定位儀顯示故障支路數,同時通過通訊線路,將故障支路信息返回給絕緣監測儀。絕緣監測儀立即報警,通過界面顯示故障支路數,同時通過通訊線路,命令信號發生器和絕緣故障定位儀停止發生信號和故障定位,信號發生器再次進入監測模式。
此次工程施工完成后,在現場對系統進行調試,模擬絕緣故障100次,絕緣故障定位率為95%。充分證明本設計在工程應用中是可行的。
5 結語
本文設計的絕緣故障定位用信號發生器,具有自適應IT系統頻率,注入高峰值、低有效值脈沖波形等功能,并可以通過面板指示燈指示當前工作狀態?;诒驹O計的產品符合相關標準的要求,并能為IT系統提供安全、可靠的供電解決方案。本文后還對醫院重癥監護室的IT系統絕緣故障定位做了初步探討,給醫院建筑電氣設計者提供一點參考。在應用中,不同工程的實際情況非常復雜,還會遇到許多新的問題,望同仁們進一步探討。
文章來源:《智能建筑電氣技術》2014年 1期
參考文獻:
[1] JGJ 16-2008 民用建筑電氣設計規范[S].
[2]IEC 61557-9 Electrical safety in low voltage distribution systems up to 1 000 V a.c. and 1 500 V d.c.— Equipment for testing, measuring or monitoring of protective measures —
Part 9: Equipment for insulation fault location in IT systems